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This article addresses the following question: Where and how often do

distinct probability density functions cross? For example, what can be said

about crossing points between normal and Student’s t or chi-square densi-

ties, respectively, and what are the asymptotic crossing points if the degrees

of freedom tend to infinity? Crossing points are especially of interest if, for

instance, the normal is used as an approximation according to the central

limit theorem because they determine the total variation distance and the

areas of over- and underestimation of actual probabilities. They are strongly

related to the behavior of the density ratio, a ubiquitous quantity in many

fields of statistics like Neyman-Pearson or decision theory. We discuss sev-

eral examples with respect to the standard normal density ϕ and provide

elegant and appealing limiting forms for asymptotic crossing points of ϕ

with respect to densities of standardized sums appearing in the central limit

theorem. Finally, we derive and investigate the crossing points of ϕ with

the t-density with ν degrees of freedom.
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1. INTRODUCTION

In statistical practice, the normal distribution is often used as an approxi-

mation for other probability distributions, for example, for the t-distribution
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with large degrees of freedom or if the central limit theorem (CLT) applies.

Then the question arises whether the normal approximation works well and

how large the approximation error can get. An apparently simple question

is for which areas the normal approximation leads to under- or overestima-

tion of the true probabilities. Denote the probability density function (pdf)

of the standard normal distribution with mean 0 and variance 1 by ϕ and

suppose that the distribution to be approximated has a Lebesgue density g.

Then the issues raised before immediately lead to the question

”Where and how often do the underlying pdf’s g and ϕ cross?”

Hence, we ask for all solutions of the equation

(1) g(z) = ϕ(z).

Any solution of (1) will be called a crossing point (CP). Alternatively, one

may also ask where the likelihood ratio g(z)/ϕ(z) is greater than, less than

or equal to 1.

In order to understand the behavior of a family of univariate distributions

with pdf’s gϑ depending on a parameter ϑ ∈ Θ ⊆ R, crossing points between

distinct gϑ’s are of interest, too. For example, suppose we fix some reference

point ϑ0 ∈ Θ. Then it is near at hand to study all solutions of the equation

(2) gϑ0
(z) = gϑ(z).

Consider the following simple example with gϑ0
= ϕ and gϑ = ϕσ (say),

where ϕσ denotes the pdf of a normal distribution with mean 0 and standard

deviation σ with 0 < σ 6= 1. Here, an explicit formula for the crossing points,

which is analytically easy to handle, can be given, and we obtain exactly

two crossing points zi = zi(σ), i = 1, 2, given by

z1 = −z2 =

√

2σ2

σ2 − 1
ln(σ).

We note that z1(σ) is strictly increasing in σ with limσ→0+ z1(σ) = 0,

limσ→∞ z1(σ) = ∞ and limσ→1 z1(σ) = 1. Setting Bσ = {z ∈ R : ϕ(z) >

ϕσ(z)}, we obtain

Bσ =

{

(−∞,−z1(σ)) ∪ (z1(σ),∞), if 0 < σ < 1,

(−z1(σ), z1(σ)), if σ > 1.

Obviously, Bσ increases if σ moves away from 1. It should be mentioned

at this point that this monotonicity behavior is a special case of the more
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general situation in one-parametric exponential families if the parameter is

a strictly monotonic function of the natural parameter of the family. The

monotonicity behavior of the CPs and the sets Bσ in σ have some intuitive

interpretation, for example, in the hypotheses testing problem

H = {ϕ} versus K = {ϕσ}

for some fixed σ with 0 < σ 6= 1. A common interpretation of the likelihood

ratio is that H is more likely if ϕ(z)/ϕσ(z) > 1 and that K is more likely if

ϕ(z)/ϕσ(z) < 1. Therefore, crossing points of densities play an important

role in hypotheses testing. According to the Neyman-Pearson lemma, the

best level α test for testing H versus K is of the type

φc(z) =

{

1, if ϕ(z)/ϕσ(z) ≤ c,

0, if ϕ(z)/ϕσ(z) > c,

where c is chosen such that
∫

φcϕdλ = α. A value of c > 1 indicates that

the test is not very specific. Anyhow, if we take c = 1 as a threshold for or

against H, one would expect that more z-values lead to a decision in favor of

H if σ moves away from 1. Noting that Bσ = {z : φ1(z) = 0}, this intuitive

reasoning is confirmed by the monotonicity behavior of the crossing points

z1(σ) = −z2(σ). Finally, it can be shown that φ1 is a Bayes test for H versus

K if we specify equal prior probabilities and equal weights for the losses due

to wrong decisions.

Unfortunately, (1) or (2) often cannot be solved analytically. However, a

numerical solution should not be a big deal, provided that there are not too

many CPs. For instance, if the family of distributions under consideration

has a strict monotone likelihood ratio (see, e.g., Lehmann and Romano 2005,

p. 65), that is, gϑ0
(z)/gϑ(z) is strictly increasing (or strictly decreasing) in

z, then there obviously exists a unique solution of (2), hence a unique CP.

There are several ways to visualize CP behavior. One may plot (i) gϑ1
(z)

and gϑ2
(z) in one picture, (ii) the difference gϑ1

(z)−gϑ2
(z), (iii) the likelihood

ratio λ(z) = gϑ1
(z)/gϑ2

(z), or, (iv) the log-likelihood ratio ln(λ(z)). In this

article we mainly display the likelihood ratio with one exception.

Figure 1 displays some likelihood ratios λν(z) = fν(z)/ϕ(z) as functions

of z, where fν denotes the pdf of a t-distribution with ν degrees of free-

dom. Apparently, for any ν there seem to be exactly two crossing points

zν,1 = −zν,2 each of which seems to converge monotonically to some fixed

value. In Section 3 we will proof this crossing point behavior and give an

elegant limiting form for the likelihood ratio which immediately yields the

3



0

z

2

 

1

1.1

−2 −1

0.9

1.0

1.2

Figure 1: λν(z) = fν(z)/ϕ(z) for ν = 3, 5, 10, 20, and −2 ≤ z ≤ 2. The

curves can be identified by noting that λν(0) is increasing in ν. Asymptotic

crossing points (ACPs) are ±
√

1 +
√

2 as pointed out in Section 3.

asymptotic crossing points (ACPs). However, the following example shows

that the behavior of CPs can be rather complicated.

Example 1. Let Xi, i ∈ N, denote a sequence of independent identically

distributed (iid) random variables with pdf

(3) hµ(z) = p1ϕ(z + µ) + p2ϕ(z − µ) + p3ϕ(z)

for some fixed µ 6= 0 and pi ∈ [0, 1] with p1 + p2 + p3 = 1, hence a mixture

of at most three normals with means 0 and ±µ and variance 1. Notice that

EXi = (p2 − p1)µ and varXi = 1 + µ2(p1 + p2 − (p1 − p2)
2). Consider the

standardized sum

Sn =

∑n
i=1(Xi − EX1)√

nvarX1
, n ∈ N.

We denote the pdf of Sn by hn(·|µ, p1, p2). Clearly, the CLT applies for

Sn and limn→∞ hn(z|µ, p1, p2) = ϕ(z) for all z ∈ R. We first consider a

symmetric mixture of two normals by choosing p1 = p2 = 1/2 and p3 = 0.

Figure 2 displays the likelihood ratio h50(z|10, 1/2, 1/2)/ϕ(z) and shows

that there may be many CPs (exactly 50 in the displayed area), possibly

some more in tail areas which are not displayed here. What happens if n

becomes larger and/or the weights pi change?

4



−4 −3 4

0.7

0.5

0.9

0−2 −1

z

 

1.1

0.6

3

1.0

0.8

1 2

Figure 2: Likelihood ratio behavior of h50(z|10, 1/2, 1/2)/ϕ(z) .

The picture on the left hand side of Figure 3 displays the likelihood ratios

hn(z|10, 1/2, 1/2)/ϕ(z) for n = 250 and n = 500. Now it seems that there are

only four CPs left in the displayed area. In Section 2, it will be shown that

±
√

3 ±
√

6 are the asymptotic crossing points for n → ∞ (independently of

µ 6= 0). The picture on the right hand side of Figure 3 displays the likelihood

ratios hn(z|10, 1/6, 1/6)/ϕ(z) for n = 100 and n = 200. Now it seems that

there are six ACPs in the displayed area. In fact, the ACPs are given by

±
√

5 + 2b,±
√

5 ± a − b, where c = arctan(
√

6/2)/3, a =
√

30 sin(c), b =√
10 cos(c); see Section 2.

The remaining part of the article is organized as follows. In Section

2 we are first concerned with ACPs between normal and the pdf of the

standardized sum if the CLT applies and provide elegant and appealing

limiting forms for ACPs. Then we pick up Example 1 with various choices of

the weights pi and derive the corresponding ACPs. The gamma distribution

including the χ2-distribution will be studied in more detail. Finally, we

study the CP behavior between normal and t-densities in Section 3, which

is not covered by the theory in Section 2. Among others, it will be shown

that the ACPs are given by ±
√

1 +
√

2 if the degrees of freedom ν tend

to infinity. The standardized t-distribution with mean zero and variance 1

leads to four ACPs given by ±
√

3 ±
√

6. In Appendix A we give a proof for

the number of CPs between gamma and normal pdf’s and a proof for the

monotonicity of the CPs between normal and tν pdf’s. Appendix B deals

with the total variation distance and its connection to CPs.
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Figure 3: Likelihood ratio behavior of (i) h250(z|10, 1/2, 1/2)/ϕ(z) and

h500(z|10, 1/2, 1/2)/ϕ(z) (left picture), and, (ii) h100(z|10, 1/6, 1/6)/ϕ(z)

and h200(z|10, 1/6, 1/6)/ϕ(z) (right picture). The curves can be distin-

guished by noting that the likelihood ratio flattens for increasing n. ACPs

are given by ±
√

3 ±
√

6 (left picture), and ±0.617,±1.889,±3.324 (right

picture).

2. CENTRAL LIMIT THEOREM AND ASYMPTOTIC CROSSING

POINTS

Of general interest is the crossing point behavior between the normal

pdf ϕ and pdf’s gn, where gn is the pdf of standardized sums

Sn = n−1/2
n
∑

i=1

(Xi − µ)/σ

of n iid real-valued continuous random variables Xi with µ = EX1 and

σ2 = varX1. In this section we derive a general solution based on a local

limit theorem for gn. To this end, we need some notation. Let

Hm(x) = m!

[m/2]
∑

k=0

(−1)kxm−2k

k!(m − 2k)!2k
, m ∈ N0,

denote the Chebyshev-Hermite polynomials as defined by Petrov (1975, p.

137), where [a] denotes the largest integer ≤ a. For example, H0(x) = 1,

H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x and H6(x) = x6 − 15x4 + 45x2 − 15. Moreover, for

r ∈ N, let

qr(x) = (2π)−1/2 exp(−x2/2)
∑

Hr+2s(x)
r
∏

m=1

1

km!

(

γm+2

(m + 2)!σm+2

)km

,
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where the summation on the right hand side is carried out over all non-

negative integer solutions (k1, . . . , kr) of the equality
∑r

i=1 iki = r. In this

formula, s = s(k1, . . . , kr) =
∑r

i=1 ki and γk denotes the cumulant of order

k of the distribution of X1. In terms of central moments µi = E(X1 − µ)i,

i ∈ N, γ1, . . . , γ6 are given by γ1 = 0, γ2 = µ2, γ3 = µ3, γ4 = µ4 − 3µ2
2,

γ5 = µ5 − 10µ2µ3, γ6 = µ6 − 15µ2µ4 + 30µ3
2 − 10µ2

3.

The next well-known theorem provides the basis for the computation of

ACPs with respect to ϕ and gn.

Theorem 1. (Gnedenko 1948; see also Petrov 1975, pp. 206-207). Let

Xi, i ∈ N, denote a sequence of iid real-valued random variables with EX1 =

µ, varX1 = σ2 ∈ (0,∞), and E|X1 − µ|k < ∞ for some integer k ≥ 3. Let

gn denote the pdf of the standardized sum Sn and assume that gn is bounded

for some n ∈ N. Then

(4) gn(x) − ϕ(x) =
k−2
∑

r=1

qr(x)

nr/2
+ o(n−(k−2)/2) uniformly in x ∈ R.

With this result ACPs are handed to us on a silver platter.

Theorem 2. (ACP Theorem for CLT pdf’s.) Let the conditions of

Theorem 1 be satisfied and let k denote the smallest integer such that E|X1|k
is finite and γk 6= 0. Then the roots of the Chebyshev-Hermite polynomial

Hk are ACPs and the sign of γkHk(x) determines where gn(x)/ϕ(x) is < 1

(> 1) on suitably chosen intervals between the ACPs.

Proof: The assertion follows immediately by verifying that, under the

assumptions of the theorem, equation (4) is equivalent to

n(k−2)/2(gn(x) − ϕ(x)) = ϕ(x)Hk(x)
γk

k!σk
+ o(1) uniformly in x ∈ R.

Notice that the equation Hk(x) = 0 has exactly k distinct solutions in

R, hence the ACP theorem yields a set Ck (say) of k distinct ACPs. We get

C3 = {0,±
√

3} ∼= {0,±1.732},

C4 = {±
√

3 ±
√

6} ∼= {±0.742,±2.334},

C5 = {0,±
√

5 ±
√

10} ∼= {0,±1.356,±2.857},

and, with c = arctan(
√

6/2)/3, a =
√

30 sin(c), b =
√

10 cos(c),

C6 = {±
√

5 + 2b,±
√

5 ± a − b} ∼= {±0.617,±1.889,±3.324}.
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Moreover, on every finite but fixed interval each CP between gn and ϕ is

close to an ACP if n is sufficiently large. However, under the assumptions

of Theorem 2 there may be more crossing points xn depending on n with

xn → ±∞. These CPs cannot be determined with the method described

before.

We now apply Theorem 2 to three distributional settings. The main task

consists in determining the cumulants of the distributions under considera-

tion.

Example 2. (Example 1 continued). (a) For p1 = p2 = 1/2, p3 = 0

we obtain γ3 = 0 and γ4 = −2µ4, hence, four ACPs are given by C4 =

{±
√

3 ±
√

6}. (b) For p1 = p2 = 1/6, p3 = 2/3 we obtain γ3 = γ4 = γ5 = 0

and γ6 = −2µ6/9, hence, six ACPs are given by C6
∼= {±0.617,±1.889,

±3.324}. (c) For p1 = 1/6, p2 = 1/3, p3 = 1/2 we obtain γ3 = −2µ3/27 6= 0,

hence, three ACPs are given by C3 = {0,±
√

3}.

Example 3. Suppose the Xi’s in Theorem 2 follow a uniform distribution

on [−a, a], a > 0 fixed. Then γ3 = 0 and γ4 = a4/5 6= 0, hence C4 applies

for ACPs.

Example 4. Suppose the Xi’s in Theorem 2 follow a gamma distribution

with pdf fτ,θ (with τ, θ > 0) given by

(5) fτ,θ(x) =
xτ−1 exp(−x/θ)

Γ(τ)θτ
I[0,∞)(x).

Since the gamma distribution has mean µ ≡ µ(τ, θ) = τθ and standard

deviation σ ≡ σ(τ, θ) =
√

τθ, the modified density f̃τ (x) = σfτ,θ(σx + µ)

given by

f̃τ (x) =

√
τ(τ +

√
τx)τ−1 exp(−(τ +

√
τx))

Γ(τ)
I[−

√
τ ,∞)(x)

corresponds to a standardized gamma distribution with mean 0 and standard

deviation 1 and is independent of θ. For τ = ν/2 we obtain the standardized

χ2-distribution with ν degrees of freedom. Moreover, Sn has pdf f̃nτ . Figure

4 shows the shape of f̃2.5(x) and f̃20(x) together with ϕ(x). Noting that

γ3 = 2τθ3 6= 0 for the gamma distribution with pdf fτ,θ, three ACPs are

given by C3 = {0,±
√

3}.
For τ > 1, the equation f̃τ (x) = ϕ(x) has exactly three distinct solutions

xi(τ) ∈ R, i = 1, 2, 3, with −√
τ < x1(τ) < −1 < x2(τ) < 0 and 1 < x3(τ).

The proof for this assertion is given in Appendix A. We conjecture that

the crossing points x1(τ) and x3(τ) are strictly decreasing in τ > 1 and
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Figure 4: f̃2.5(x), f̃20(x) and ϕ(x). The curves can be identified by noting

that the mode of the standardized gamma distribution is decreasing in τ .

The ACPs are given by 0 and ±
√

3.

the crossing points x2(τ) are strictly increasing in τ > 1. If this conjecture

holds true we get that x1(τ) ∈ (−
√

min{3, τ},−1), x2(τ) ∈ (−κ, 0), x3(τ) ∈
(
√

3, 2 + κ) for τ > 1, where κ = (3 − ln(2) − ln(π))1/2 − 1 ≈ 0.078.

For τ ∈ (0, 1] the situation is somewhat different and will not be con-

sidered here. Notice that fτ,θ(0) = 0 for τ > 1, but f1,θ(0) = 1/θ and

limx→0 fτ,θ(x) = ∞ for τ ∈ (0, 1). It even holds that limτ→∞ f̃τ (x) = ϕ(x)

for all x ∈ R.

3. CROSSING POINTS OF NORMAL WITH T

In this section we study the crossing points between t-densities fν and

the standard normal density ϕ. The density of the tν-distribution is given

by

fν(z) =
Γ (ν/2 + 1/2)

Γ (ν/2)

1√
ν π

(

1 +
z2

ν

)−ν/2−1/2

, z ∈ R.

It is well known that t-densities approach the standard normal density

ϕ if the degrees of freedom tend to infinity. Although it seems common

knowledge that there are exactly two crossing points between the t- and

normal densities (cf. the discussion around Figure 1), some effort seems

necessary to prove this fact. As main results it will be shown that the ACPs

for ν → ∞ are given by ±
√

1 +
√

2 and that the CPs are monotone with
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respect to the degrees of freedom. Ingredients for proving these results are

series expansions, the implicit function theorem and the theory of variation

diminishing transformations. Especially the monotonicity of the CPs seems

to be a hard nut to crack and is deferred to Appendix A. Similarly as in

Section 1, some intuitive reasoning for the monotonicity can be given in

terms of testing hypotheses by considering the sets {z : ϕ(z)/fν(z) > 1}
which turn out to be decreasing in ν.

One might expect similar results for the standardized tν-distribution with

variance 1, which differs only slightly from the original tν-distribution with

variance ν/(ν−2) if ν > 2. Perhaps surprisingly, in the case of the standard-

ized tν-distribution four ACPs occur and are given by C4 = {±
√

3 ±
√

6}.
First, we summarize some useful facts. The family of t-densities {fν :

ν ∈ Θ}, Θ = (0,∞], (including the limit ϕ = f∞) does not have a monotone

likelihood ratio in (z, ν) but has a strict monotone likelihood ratio on certain

distinct intervals, i.e., for 0 < ν < µ ≤ ∞, fν(z)/fµ(z) is strictly increasing

on [−1, 0] and [1,∞), and strictly decreasing on (−∞,−1] and [0, 1].

The following lemma gives the number of crossing points between t-

densities with different degrees of freedom and between t-densities and ϕ.

Lemma 1. For each pair ν, µ ∈ Θ, ν 6= µ, the equation fν(z) = fµ(z)

has a unique solution zν,µ on (0,∞), and, zν,µ > 1.

Proof: We first show that the function g : (0,∞) × (0,∞) → (0,∞)

defined by

(6) g(z, a) = ln

(

Γ(z + a)

Γ(z)za

)

is strictly increasing in z > 0 for a ∈ (0, 1) and strictly decreasing in z > 0

for a ∈ (1,∞). To this end, let Ψ(x) = (d/dx) ln(Γ(x)) for x > 0 denote the

digamma function. With the representation

Ψ(x) =

∫ ∞

0
[exp(−t)/t − exp(−xt)/(1 − exp(−t))]dt

we easily obtain

∂

∂z
g(z, a) = Ψ(z + a) − Ψ(z) − a

z

=

∫ ∞

0
exp(−zt)

(

1 − exp(−at)

1 − exp(−t)
− a

)

dt.

Obviously, the integrand of the last expression is strictly positive for a ∈
(0, 1) and strictly negative for a > 1, hence, the assertion follows. Now, by
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choosing a = 1/2 and z = ν/2 in (6) we immediately obtain that fν(0) is

strictly increasing in ν ∈ Θ. Moreover,

lim
z→∞

fν(z)

fµ(z)
= ∞ for all 0 < ν < µ ≤ ∞.

Now the assertion follows by combining these facts with the likelihood ratio

properties mentioned at the beginning of this section.

In the following theorem, the ACPs between ϕ and fν are given for ν

tending to infinity.

Theorem 3. Let zν > 0 be the positive solution of fν(z) = ϕ(z), ν > 0.

Then

lim
ν→∞

zν =

√

1 +
√

2 = 1.553773974 . . .

Proof: From Fisher (1925), who gave an expansion for the logarithm of

the ratio of t- and normal density, we have

ln(fν(z)) − ln(ϕ(z)) =
z4 − 2z2 − 1

4ν
+ O

(

ν−2
)

.

Therefore, the equation fν(z) = ϕ(z) is equivalent to

ν(z4 − 2z2 − 1) = O(1).

From Lemma 1 we know that the latter equation has a unique solution zν ∈
(1,∞). Noting that O(1) is uniformly bounded in z on compact intervals,

the assertion follows.

Remark 1. By using Fisher’s (1925) higher order expansion

ln(fν(z)) − ln(ϕ(z)) =
z4 − 2z2 − 1

4ν
− 2z6 − 3z4

12ν2
+ O

(

ν−3
)

and setting d(z, ν) = 4ν [ln(fν(z) − ln(ϕ(z))], we get the representation

d(z, ν) = (z4 − 2z2 − 1) +
1

ν
(z4 − 2

3
z6) + O(ν−2).

With u = z2 we obtain a cubic equation. Its unique solution on (1,∞) is

asymptotically given by

zν =

√

1 +
√

2 +
C

ν
+ O(ν−2) with C =

1

24

8 + 5
√

2
√

1 +
√

2
.

This representation can be used as an approximation of the exact crossing

point, even in the finite case.
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Figure 5: Likelihood ratio λ̃ν(z) = f̃ν(z)/ϕ(z) for ν = 5, 10, 20, 100. The

curves can be identified by noting that λ̃ν(0) is decreasing in ν.

Finally, it can be shown (see Appendix A) that the zν ’s are decreasing

in ν. Setting Bν,µ = {z ∈ R : fν(z)/fµ(z) > 1}, this is equivalent to

Bν,µ ( Bν,η for 0 < ν < µ < η ≤ ∞,

in accordance with the hypotheses testing interpretation outlined in Sec-

tion 1.

Remark 2. It is remarkable that standardization of the tν-distribution

leads to four crossing points. Suppose the random variable X has a tν-

distribution. Then, for ν > 2, the standardized variable Y = X/
√

ν/(ν − 2)

has mean 0 and variance 1 with pdf f̃ν(z) =
√

ν/(ν − 2)fν(z
√

ν/(ν − 2)).

With the method illustrated before, it can now be shown that this transfor-

mation results in exactly four CPs between ϕ and f̃ν (or f̃ν and f̃µ, ν 6= µ).

For ν → ∞, the ACPs between ϕ and f̃ν are now given by ±
√

3 ±
√

6

which already appeared in connection with Theorem 2. We give a brief out-

line for a proof. First, for 2 < ν < µ ≤ ∞, the likelihood ratio f̃ν(z)/f̃µ(z)

is strictly decreasing on (−∞,−
√

3] and [0,
√

3] and strictly increasing on

[−
√

3, 0] and [
√

3,∞), see Figure 5 for an illustration. Moreover, in contrast

to fν(0), f̃ν(0) is strictly decreasing in ν ∈ (2,∞). To see this, write

f̃ν(0) =

√

ν

ν − 2

Γ (ν/2 + 1/2)

Γ (ν/2)

1√
ν π

=
Γ(z + a)

Γ(z)za

1√
2π
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with z = ν/2 − 1, a = 3/2, and the assertion follows by applying the

properties of the function g defined in (6). The asymptotic crossing points

can be obtained as in the proof of Theorem 3. We conjecture that the

smaller (larger) positive crossing point between ϕ and f̃ν is strictly increasing

(decreasing) in ν > 2.

APPENDIX A

Lemma 2. Let τ > 1 in Example 4. Then the equation f̃τ (x) = ϕ(x) has

exactly three distinct solutions xi(τ) ∈ R, i = 1, 2, 3, with −√
τ < x1(τ) <

−1 < x2(τ) < 0 and 1 < x3(τ).

Proof: Consider the likelihood ratio defined by λτ (x) = f̃τ (x)/ϕ(x) on

R. It is easily seen that λτ (x) = 0 for x ≤ −√
τ , λτ (x) is strictly increasing

on [−√
τ ,−1], strictly decreasing on [−1, 1] and strictly increasing on [1,∞)

with limx→∞ λτ (x) = ∞. Consequently, it remains to show

λτ (−1) > 1,(7)

λτ (0) < 1,(8)

λτ (1) < 1.(9)

Therefore, we study the behavior of the log-likelihood ratio gτ (x) =

ln(λτ (x)) for x > −√
τ and note that

gτ (x) = ln(τ)/2+(τ−1) ln(τ+
√

τ x)−(τ+
√

τ x)−ln (Γ(τ))+ln(2π)/2+x2/2.

A straightforward calculation yields

(10)
d2

dτ2
gτ (0) =

1

τ
+

1

2τ2
− Ψ′(τ).

Note that Ψ′(τ) =
∑∞

j=0(τ + j)−2. In the following we make use of the

inequalities

(11)
1

τ
+

1

2τ2
<

∞
∑

j=0

1

(τ + j)2
<

1

τ − 1/2

which apply for all τ > 1. These bounds can be derived by applying the

integral criterion for convergent series. From the left hand side inequality

in (11) we get
d2

dτ2
gτ (0) < 0,

13



i.e., gτ (0) is strictly concave in τ > 1. Together with g1(0) = ln(2π)/2−1 <

0, limτ→∞ gτ (0) = 0 and the monotonicity behavior of λτ stated before, we

have proven (8) and (9). In order to show (7), observe that

d2

dτ2
(gτ (−1) − gτ (0)) =

1

2τ2(
√

τ − 1)
.

Plugging in (10) and the right hand side of (11), we obtain for τ > 1 that

d2

dτ2
gτ (−1) =

1

τ
+

1

2τ2
− Ψ′(τ) +

1

2τ2(
√

τ − 1)
>

√
τ(2τ − 1) + τ

2τ2(τ − 1)(2τ − 1)
> 0.

Hence, (7) follows.

Theorem 4. The zν ’s defined in Theorem 3 are strictly decreasing in

ν ∈ (0,∞) and, for every fixed µ > 0, the zν,µ’s defined in Lemma 1 are

strictly decreasing in ν ∈ (0, µ).

Proof: The proof given here relies on studying the analytic proper-

ties of the log-likelihood ratio λ̃ν(z) = ln(fν(z)/ϕ(z)). Obviously, the

monotonicity of the zν,µ’s can equivalently be expressed by the monotonic-

ity of the roots of λ̃ν . For a fixed µ > 0 we therefore define Fµ(ν, z) =

λ̃ν(z) − λ̃µ(z) and zµ(ν) = zν,µ. Note that the function zµ is implicitly de-

fined by Fµ(ν, zµ(ν)) = 0. In order to show the monotonicity of the function

zµ(ν) we apply the Implicit Function Theorem, which yields

dzµ(ν)

dν
= −∂Fµ

∂z
(ν, zµ(ν))−1 ∂Fµ

∂ν
(ν, zµ(ν)).

Since the function ∂Fµ/∂z is strictly positive for all z > 1 and ν ∈ (0, µ),

the main task of our proof consists of studying the function ∂Fµ/∂ν with

respect to ν. For x > 1 we define g(ν, x) = 2Fµ(ν,
√

x) and show (see below)

(12) ν(ν + x)
∂

∂ν
g(ν, x) is strictly decreasing in ν ∈ (0,∞),

lim
ν→0

(

ν(ν + x)
∂

∂ν
g(ν, x)

)

= 2x,(13)

lim
ν→∞

(

ν(ν + x)
∂

∂ν
g(ν, x)

)

= −1

2
(x2 − 2x − 1).(14)

From the definition of Fµ we get limν→0 Fµ(ν, z) = −∞ and limν→µ Fµ(ν, z)

= 0 for each z > 1. From properties (12)-(14) we see that the equation

14



Fµ(ν, z) = 0 has no solution if ν ∈ (0, µ) and 1 < z ≤
√

1 +
√

2, thus

zµ(ν) >
√

1 +
√

2. Since for fixed 0 < ν < µ we have Fµ(ν, zν,µ) = 0 and

since there exists a unique ν0 ∈ (0, µ) with (∂Fµ/∂ν)(ν0, zµ(ν)) = 0, we

conclude that ν0 ∈ (ν, µ), hence (∂Fµ/∂ν)(ν, zµ(ν)) > 0.

It remains to show the properties (12), (13) and (14). Let

ν(ν + x)
∂

∂ν
g(ν, x) = ax(ν) + bx(ν) − x(x − 1),

where ax(ν) = ν(ν + x)C(ν) with C(ν) = Ψ(ν/2 + 1/2)−Ψ(ν/2)− 1/ν and

bx(ν) = (ν + x)(x − ν ln(1 + x/ν)). First note that

d

dν
bx(ν) = 2x − (2ν + x) ln

(

1 +
x

ν

)

,

d2

dν2
bx(ν) = −2 ln

(

1 +
x

ν

)

+
(2ν + x)x

ν(ν + x)
,

d3

dν3
bx(ν) = − x3

ν2 (ν + x)2
.

Obviously, (d3/dν3)bx(ν) < 0 for all ν ∈ (0,∞), hence (d2/dν2)bx is strictly

decreasing. Since limν→∞(d2/dν2)bx(ν) = 0 it follows that (d2/dν2)bx is

strictly positive on (0,∞), which entails that bx is strictly convex on (0,∞)

for any fixed x > 1. Together with

(15) lim
ν→0

bx(ν) = x2 and lim
ν→∞

bx(ν) = x2/2

we furthermore get that bx(ν) is strictly decreasing in ν ∈ (0,∞) for any

fixed x > 1. The first part of (15) is immediately proved by noting that

L’Hospital’s rule yields limν→0(ν ln(1 + x/ν)) = 0 while the second part

follows by inserting ln(1 + x/ν) = −x/ν + x2/(2ν2) + O(ν−3) in bx(ν).

Moreover, for ax(ν) we get

(16) lim
ν→0

ax(ν) = x and lim
ν→∞

ax(ν) = 1/2.

In order to prove (16), we use the series representation Ψ(z + 1) = −γ +
∑∞

n=1 z/(n2 + nz). Some algebraic manipulations result in

ax(ν) = (x + ν)

(

1 − ν

ν + 1
+ ν

∞
∑

n=2

2

(2n + ν − 1)(2n + ν − 2)

)

which immediately yields the first part of (16). For the second part we

furthermore utilize the representation ν−1 =
∑∞

k=0(ν + k)−1(ν + k + 1)−1

15



and obtain with z = ν/2 in a few steps

lim
ν→∞

ax(ν) = lim
z→∞

∞
∑

k=0

z(z + x/2)

(z + k)(z + k + 1/2)(z + k + 1)

= 1/2.

Now, combining (15) and (16) yields (13) and (14).

The remaining property (12) will be deduced by showing that ax is

strictly decreasing in ν ∈ (0,∞) for any fixed x > 1. For a fixed con-

stant K ∈ R, consider the function ax(ν) − K. Via Laplace transformation

we obtain

ax(ν) − K =

∫ ∞

0
exp(−νt)ν(ν + x)

[

1 − exp(−t)

1 + exp(−t)
− (1−exp(−xt))

K

x

]

dt

=

∫ 0

−∞
exp(νt)ν(ν + x)f(t|K, x)dt.

with f(t|K, x) = (1 − exp(t))/(1 + exp(t)) − (1 − exp(xt))K/x. Note that

the function exp(νt) is strictly totally positive of order ∞ (STP∞(ν, t)) and

that ν(ν + x) > 0 for all ν > 0, x > 1. Expressing the function f as

f(t|K, x) =
1 − exp(xt)

1 + exp(t)

[

1 − exp(t)

1 − exp(xt)
− (1 + exp(t))

K

x

]

,

it is easily seen that f(·|K, x) has at most one sign change on (−∞, 0)

for each K ∈ R and x > 1. As a consequence, the theory of Variation

Diminishing Transformations (see Brown et al. (1981)) yields that ax(ν)−K

has at most one sign change (at an isolated zero) for each K ∈ R. Together

with the limiting behavior of ax for ν = 0,∞ it follows that ax is strictly

decreasing in ν ∈ (0,∞) for any fixed x > 1. These considerations complete

the proof.

APPENDIX B

A more formal illustration of the importance of CPs between densities

appears in terms of the maximum difference between two probability mea-

sures P1 and P2, known as total variation distance. This distance measure

can be defined by

dTV(P1, P2) = sup
A

|P1(A) − P2(A)|,

where the supremum is taken over all measurable sets A. Now suppose that

Pi has a pdf with respect to the Lebesgue measure λ on R, i = 1, 2. Then
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the total variation distance between P1 and P2 can be calculated by

dTV(P1, P2) =
1

2

∫

|g1(z) − g2(z)|dλ(z)

=

∫

B
(g1(z) − g2(z))dλ(z),

where B = B(g1, g2) = {z ∈ R : g1(z) > g2(z)}. Typically, the set of

crossing points between g1 and g2, that is, {z ∈ R : g1(z) = g2(z)}, can be

used to describe the set B.

For example, in order to compute the total variation distance (TVD)

between normal and tν-distribution, let Φ denote the cumulative distribu-

tion function (cdf) of the standard normal distribution and let Fν denote

the cdf of the tν-distribution. Denote the TVD between normal and tν by

dTV(Φ, Fν), Then we obtain from Theorem 4 that

dTV(Φ, fν) = 2[Fν(−zν) − Φ(−zν)]

> 2[Fν(−(1 + 21/2)1/2) − Φ(−(1 + 21/2)1/2)].

For large values of ν, the bound on the right hand side yields a good approx-

imation for dTV(Φ, Fν). The maximum difference in one tail is dTV(Φ, Fν)/2.
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nostĕı”, Uspehi matem, 3, No. 3, 187-194.

Lehmann, E. L., Romano, J. P. (2005), Testing statistical hypotheses. 3rd

ed., Springer, New York.

Petrov, V. V. (1975), Sums of independent random variables, Translated

from the Russian by A. A. Brown. Ergebnisse der Mathematik und

ihrer Grenzgebiete, Band 82, Springer, New York.

17


	INTRODUCTION
	CENTRAL LIMIT THEOREM AND ASYMPTOTIC CROSSING POINTS
	CROSSING POINTS OF NORMAL WITH T
	APPENDIX A
	APPENDIX B
	REFERENCES

